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The algebraic stress model is applied to a turbulent swirling round jet with recirculation, and 
the prediction is compared with that of the standard k-e model and experimental data. The 
anisotropic eddy viscosities in three directions are assumed in a way similar to the 
Boussinesq eddy viscosity hypothesis as functions of the mean velocity gradients, the 
turbulent kinetic energy, and its dissipation rate. The results show that the algebraic stress 
model yields very good agreement with experimental data on both axial and tangential 
velocity distributions. 

Keywords: algebraic stress model; turbulence; swirl; jet; recirculation; eddy viscosity 

Introduction 
Turbulent swirling flow has important engineering applications 
in gas turbine combustors and furnaces. A strong swirl with a 
swirl number larger than 0.5 imparted onto a round jet produces 
a recirculation zone around the jet axis near the nozzle exit, 
which provides efficient mixing of the fuel with the surrounding 
air and the combustion products. 

Many experimental investigators 1 6 have offered measure- 
ments of mean and turbulent quantities in the swirling jet, which 
have been extensively reviewed by Morse. 7 In particular, in the 
case with recirculation, Sislian and Cusworth 6 provided LDV 
measurements of the profiles of three mean velocity components 
and all six Reynolds stress components at the nozzle exit and the 
downstream locations. 

The swirl imparted to the turbulent flow significantly modifies 
the turbulent structure, as described in the above experimental 
investigations, and thus any computational turbulence model 
for swirling flows must take the swirl effect on turbulence into 
account. The existence of recirculation is also an important 
factor for development of the turbulence model. The 
conventional turbulence models, such as the mixing length 
model and the two-equation models, originally proposed for 
simple shear layers must thus be modified to take into account 
the effect of swirl. For  this purpose, Bradshaw a proposed a 
simple empirical correction for mixing length, based on the 
analogy between streamline curvature and buoyancy. Similar 
approaches to the length scale of the k-e model were also used, 
by Launder, Priddin, and Sharma 9 and Rodi, 1° but they 
showed limited applicability, as proved by Leschziner and 
Rodi zl and ChenJ 2 Leschziner and Rodi ~1 reported their 
computational results of a strongly swirling jet and concluded 
that the standard k-e model gives results better than those of any 
swirl-corrected k-e model in the case with recirculation. 

The Reynolds stress transport model as a second-order 
closure scheme is regarded as a most logical approach to the 
turbulence closure problem, which does not need any ad hoc 
modification for extra strain rates. However, for the prediction 
of swirling flow with recirculation, it is necessary to solve a total 
of 11 governing differential equations of elliptic type: a 
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continuity equation, three momentum equations, an e-equation, 
and six equations for the Reynolds stresses. Thus, the 
computational complexity with tliis model is considerable. For  
the swirling flows without recirculation, there have been a few 
numerical investigations with the Reynolds stress model, such 
as those by Launder and Morse, 13 Higuchi and Rubesin, 14 
Ettestad and Lumley, 15 and Gibson and Younis. 16'17 Gibson 
and Younis 16 presented computations of weakly swirling jets of 
which agreements with experiments are satisfactory. 

Compared with the Reynolds stress model, the algebraic 
stress model, which has been successfully used for other types 
of complex turbulent flows, ~8 should be an economic yet 
reasonably accurate computational method if the swirl effect is 
reflected in the governing equations in an appropriate way. 
There can be several other types of algebraic stress model, 
depending on the approximation and the way in which k and e 
are obtained. Koosinlin and Lockwood ~9 applied their 
algebraic stress model to the calculation of boundary layer flows 
over rotating bodies. They obtained k and e from equations for k 
and the turbulent length scale. For  the prediction of diffuser 
flows with inlet swirl, Hah 2° used the algebraic stress model 
with the k and e equations, which introduces the approximation 
other than that of Koosinlin and Lockwood 19 for the collective 
effect of convection and diffusion terms in the stress equation. 

The present work investigates another type of algebraic stress 
model for the calculation of swirling flow with recirculation. For  
weakly swirling flows without recirculation, a new, simple 
correction method for the k-e model, which takes into account 
the effect of swirl, has been derived from this algebraic stress 
model in a previous work. 21 

The main purpose of the present work is to show that the 
effects of swirl and recirculation in a strongly swirling round jet 
can be correctly reproduced by the algebraic stress model. For  
this purpose, the experiment of Sislian and Cusworth 6 is 
selected as a test flow. 

Turbulence model 
The equation for the Reynolds stress tensor represented by 
Launder, Reece, and Rodi zz is 

Duiuj = Dij -t- P~i + qbiJ -- z360~ (1) 
Dt 
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where 

Ox~ J (2) 

OU~ _ _  OU~ 
P O  = - u ~u~ - - -  u ~ u ~  - -  (3) Ox~ OXk 

(a~ = - ct e_ ~ - ~ 6 q k ) -  c~(P O- zaaoP ) (4) 
k 

indicate the diffusion, production, and pressure strain tensors, 
respectively. Here, the production rate of k is defined by 
P=-u-~-fi[(OUffOx~). The derivation of the algebraic stress 
equation starts from Equation 1. According to Ref. 23, the 
assumption of constant up~/k allows the following 
simplification: 

Ouiu~ n. =u~us (p_~) (5) 
Dt ~q k 

Substitution of Equation 5 into Equation 1 converts the 
differential equation 1 to an algebraic equation, which after 
some manipulations, reduces to 

UlU j 
k = ~1 -~+~2'~q (6) 

where 

1 - c  2 2 %P/e+c I - 1 
4h = and 4)2 P/e+ct-1 3 P / e + c t -  1 

The model constants are taken as ct = 1.8 and c2 =0.6 in this 
work; these have been used by Gibson 2~ in the calculation of 
shear flow with streamline curvature. 

For the axisymmetric swirling flows, each production tensor 
is expressed in cylindrical coordinates as follows: 

P ~ = - ( 2 ~  0U+2fiF0x ~ r  U) (7) 

P22 = _ ( 2 ~  OV .~OV W "~ ~-x + 2v ~-r - 2 ~- FF-) (8) 

/ OW OW V:7 f 
P33= -- ~2fi-ff ~--x + 2~ff -~r + 2 r w ) (9) 

P12 = - ( u f i -  ~ x + t ~  -~-r + u  (10) Tr-7 / 

OU 
Pla = -  ( ~ -O-xx +-('~- OU~, + ~ ~-~x +~F OW+V r J (11) 

[ O V  __OV _ 
P23---- --Ix uw ~X +Ow -~r +up  OW - .~OW V _ _  W[.-~.2"~ ~+~ W+7 ~w-7~ ) 

(12) 

where the subscripts 1, 2, and 3 indicate x, r, and 0 coordinates, 
respectively. From Equations 7-9, expressions for normal stress 
components are derived from Equation 6 in terms of shear 
stresses. 

~ - =  -C.(2-fi-6 OU ok2 e~ 
k 

Ox ¢ , , j  

(13) 

(14) 

(15) 

where 
~k/~ 4~k/~ 

C= - 1 + 2d~ 1 (k/e)(O U/Ox)' C~ = 1 + 24~ 1 (k/t)(O V/&)' 

and 
4~k/e 

Cw 1 + 2~lkV/tr 
Then Equation 6 and Equations 10-15 yield the following 
equations for the shear stresses: 

--UV 
ov  

l+q'~\ax & J Or ax 
(16) 

d~,!(ufi OW OV OVOW __WOW\ krC OW C W\ 
_ r  +2c.=w - v )  

-vw k [OV V\ 
l+4~l :[~r+7)+24~dC°+C')~ r & 

k WOW 

(17) 

dpt ! (-fi-~- ~-+-fi-fi 0~-~-- 2 C=~ O~--~ ~x )+ dd2k c= OoW x 
--UW ~-- , k_(ov+v  

1+ e\Ox rJ  
(18) 

N o t a t i o n  

CI, ¢2, Cs 
C=, C~, Cw 

D 
D O 
k 
N,, N~ 

P 
Po 

r 
Sx, S,, So 

Turbulence model constants 
Parameters in Equations 13-15, 
respectively 
Diameter of nozzle exit 
Rate of diffusion of u~uj, Equation 2 
Turbulent kinetic energy 
Numbers of grid points in radial and 
axial directions, respectively 
Rate of production of k 
Rate of production tensor of u~u~, 
Equation 3 
Pressure 
Radial coordinate 
Parameters in Equations 23-25, 

U,E W 

puv,pvw,puw 
pU 2 , pt; 2, pW 2 
X 
6u 

0 
Yt 
Vs I , Vr 2, V~ 3 

P 

~q 

respectively 
Axial, radial, and tangential mean 
velocity components, respectively 
Reynolds stress tensor 
Reynolds shear stresses 
Reynolds normal stresses 
Axial coordinate 
Kronecker delta 
Rate of dissipation of k 
Tangential coordinate 
Eddy viscosity defined by Equation 28 
Eddy viscosities defined by Equations 19- 
21, respectively 
Density 
Parameters in Equation 6 
Pressure-strain correlation term, Equation 
4 
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Further manipulation makes it possible to express each shear 
stress component in the form which does not include any other 
stress component. Thus, all six stress components can be 
determined from the solutions of k, e, and the mean flow 
equations. 

For convenience, the following expressions for eddy 
viscosities are introduced as in Ref. 25: 

- -  U / )  

v~, = ~V/Ox + c?U/Or (19) 

- -  U W  

v,~ OW/Or- W/r (20) 

- -  U W  

v,, =-~W/ex (21) 

Actually, these definitions of the eddy viscosities represent the 
strong dependence of shear stresses on the local strain rates of 
the mean flow, which has been found in the experiment of the 
swirling jet with recirculation by Sislian and Cusworth. 6 
Equations 19-21 also imply the anisotropy of turbulent eddy 
viscosities which the standard k-e model does not take into 
account. Then the mean flow equations for axisymmetric 
swirling flow take the following forms: 

Continuity equation 

~U 1 O(rV) 
0 (22) 

c3x r ~r 

Momentum equations 

OU ~U 1 OP 1 O /  OU'~ O / OU\ 

c~V OV W 2 1 8/5 1 c9 ( c~V\ 
U ~ x + V ? r  r p Or + r ~ r ~ V " r ~ , r )  

+ ?~x v,, Ox J S, (24) 

ow ow v w  1 ~ / ow~ ,~ / ~w'~+s. 
U ~ x + V ~ - r - ~  r rOr~V,~r~r-r )+~-xx~V,,~x ] o (25) 

where 

1 0 / O v \  O / OU\  

- - 2 v , ,  - -  

0 [ W \  v,,c?W W 
7)+ 7 -2V,2 # 

The above algebraic stress model uses the following equations 
for k and e: 

ok ok o . o r o k \  
Uc~x+ V . . . . .  ~r ~-k Or)+ P--e, (26) Or ~x \a k OXJ r Or 

Oe VC~e= c~, /v, Oe "l 1 c? / v, Oe\ e e 2 
- - - -  + - - -  r - - - -  +C~1 P - C ~ z k -  (27) U~xx+ Or Ox~cre~x ) rOr~  if, Or) 

where 
k 2 

v, = C. - -  (28) 

The model constants are ak = 1., a, = 1.22, C,~ = 1.44, C~2 = 1.92, 
and C~ = 0.09, which have been suggested in Ref. 26. 

When the eddy viscosities v,,, v~,, and v,, are replaced by v,, 
Equations 22-27 are reduced to the equations of the standard k- 

model. 

Computational results and discussions 

The boundary conditions used here are summarized in Table 1, 
and the calculation domain is shown in Figure 1. The 
computational inlet plane was located at x/D=O.125, where 
experimental data are available. The inlet conditions for 
velocity components and k have been obtained from the 
experiment, and the dissipation rate, which is not available from 
experiment directly, is calculated by the equation shown in 
Table 1, using the experimental data of uF. 

The computer program was based on a modified version of 

16D X 

1 

~ ) , - -  

t / 8  D 

Figure I Calculation domain 

Table 1 Boundary condition 

~ ~  Variable 
Boundary ~ U V W k f. 

/(2 0U 
Inlet Experimental data Experimental data Experimental data Experimental data e=0.09 - - -  

u~ Or 

OU Ok 0~ 
Symmetric axis - - = 0  0 0 - - = 0  - - = 0  

Or Or Or 
02U 02W Ok ~38 

Outlet ~ - =  0 A =0 - - = 0  - - = 0  Ox z Ox 2 Ox Ox 
Entrainment boundary 0 B 0 0 0 

A: V computed from continuity equation. 
B: V computed from r-momentum equation with rV-=constant. 
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Figure 3 Distr ibutions of tangential veloci ty (symbols as in Figure 2) 

TEACH. 26 Convection terms in the governing equations were 
discretized by the hybrid central/upwind difference scheme. The 
computational mesh consisted of 37x24  (N, xNx) 
nonuniformly distributed nodes. Twenty-four nodes in the r- 
direction and eight nodes in the x-direction are concentrated in 
riD < 1 and x/D < 2, respectively. The grid dependence test with 
the k-e model showed that the finer mesh scheme (47 x 28) yields 

4. O. 4. O. W ( m / 8  ) 

a length of recirculation only 2 ~o larger than the present mesh 
scheme. The converged solutions were obtained after more than 
1000 iterations. The underrelaxation factors were 0.5 for the 
mean velocity components and 0.7 for k, e, and eddy viscosity 
with the k-e model, and were 0.2 and 0.1, respectively, with the 
algebraic stress model. 

The computations have been performed with an algebraic 
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stress model and the standard k-e model for predictions of mean 
velocities U, V, and W in the flow field of a swirling jet with 
recirculation. The results are compared with the experiment of 
Sislian and Cusworth. 6 In the'experiment, the swirl number was 
0.79, and the Reynolds number, based on the average velocity at 
the nozzle exit, was 1.16 x 104. During the initial effort of the 
present study, it was found that the skew-upwind difference 
scheme 27 gives results no better than the hybrid central/upwind 
difference scheme in this particular case of the swirling jet, and 
that the inlet distribution of e has a great influence on the 
computational results of the radial velocity profiles, as in Ref. 
11. 

Axial and tangential velocity profiles are represented in 

Figure 2 and Figure 3, respectively. The algebraic stress model is 
shown to yield more accurate predictions than the k-e. model on 
both velocity components. It is found that the standard k-e 
model generally overestimates the maximum velocities and 
underestimates the jet spreading. 

Figure 4 and Figure 5 show the distributions of shear stresses 
u~ and b-if, respectively. In both figures, the algebraic stress 
model also gives better results compared to those of the 
standard k-e model. However, in Figure 4, both computations 
underestimate the negative peak values of ~ .  The computed 
locations of zero ~ almost coincide with the measured 
locations of maximum axial velocity. As concluded by Sislian 
and Cusworth, 6 the experimental data show that the radial 
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positions of zero u~ and zero ~U/Or almost coincide at all 
sections where the measurements are given, and that radial 
positions of minima and maxima of these quantities also 
coincide at all sections. The same is true for measured V~- and 
r O(W/r)/~r up to the section x/D = 2. Further (iownstream the 
coincidence of these quantities deteriorates. Therefore, such a 
strong dependence of these shear stresses on the local strain 
rates of mean flow justifies the use of anisotropic eddy viscosities 
in the present algebraic stress model. However, due to the 
breakdown of the dependence of measured ~ on rO(W/r)/ar in 
the downstream of x/D=2. ,  the locations of computed 
maximum Vw- do not coincide with those of the measured ones 
in this region, as shown in Figure 5. 

The anisotropies of directional eddy viscosities are shown in 
Figure 6, where the eddy viscosities defined by Equations 19 and 
20 are compared with the eddy viscosity of the standard k-e 
model. The largest difference between the computed eddy 
viscosities vt, and v,~ occurs at the radial distance very close to 
the line of maximum mean velocity. In the downstream of the 
recirculation zone where the jet shows slender swirling shear 
layer behavior, the anisotropic eddy viscosities of the algebraic 
stress model are smaller than the isotropic eddy viscosity of the 
k-e model in the stable region near the axis where the mean 
angular momentum increases with radius. The converse is 
shown in the unstable region. This phenomenon suggests that 
the algebraic stress model accounts for the effect of swirl, which 
is to diminish turbulent transport in stable flow and to augment 
it in unstable flow. 

C o n c l u s i o n s  

An algebraic stress model for the computation of axisymmetric 
swirling flows which accounts for the effect of swirl was derived. 
The equations for turbulent stresses were obtained by 
simplifying the Reynolds stress equations. The algebraic stress 

model was shown to predict the swirling jet flow with 
recirculation with an accuracy sufficient for practical purposes, 
and therefore it is concluded that the swirl effect can be 
simulated realistically. 
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